无功功率补偿容量的确定:根据QC=K•P(tgφ2-tgφ1)=K•P•Qi(千乏),式中,P为用户的有功功率(即负载功率);而Qi为无功功率补偿率,既单位有功功率所需的电容器补偿值,其单位为千乏/千瓦。Qi=(tgφ2-tgφ1)可以由表3-2查出: 补偿后补偿前cosφ1 为得到所需COSφ2,每千瓦负荷所需电容器器的千乏数 0.80 0.84 0.88 0.90 0.92 0.94 0.96 1.00COSφ1=0.30 2.42 2.52 2.65 2.70 2.76 2.82 2.89 3.18COSφ1=0.40 1.54 1.65 1.76 1.81 1.87 1.93 2.00 2.29COSφ1=0.50 0.98 1.09 1.20 1.25 1.31 1.37 1.44 1.73COSφ1=0.54 0.81 0.92 1.02 1.08 1.14 1.20 1.27 1.56COSφ1=0.60 0.58
现做个电气化铁路电容补偿的工程,设计图纸上电容器规格型号为BAM-8.4KV-100kvar,实际厂家到货型号为AAM-8.4KV-4.51uF,我计算了一下100Kvar电压为8.4KV的电容器容量的却为4.51微法,可BAM为并联电容器型号,而AAM为滤波电容器型号,请问并联电容器与滤波电容器的区别,那样电容器更适合电气化铁路
本帖最后由 lyh12312 于 2013-8-26 11:04 编辑 工地有一台800KVA 10kv/400v的干式变压器。计量点在高压侧。采用兰吉尔E650电表。CT变比为75/,PT变比为100/1,因为刚开工,变压器基本上都是空载运行。造成功率因数很低。手动在低压侧投入一组30KVAR电容来补偿变压器的无功损耗。但投入后发现。电表计算的无功反而更多。由此计算的功率因素反而更低了。这是什么原因呀。请教大家。补充一点。功率因数我是通过电表计算出来。采用的是当前正向无功来计算的。
图中为什么要把两个电容逆串联,这样两个电容器逆串联的电容是多少,怎么计算呢?有什么作用?
用数字万用表检查,将数字万用表拨到合适的电阻档,红表笔和黑表笔分别接触被测电容器的两极。这时,显示值将从000开始逐渐增加,直到显示溢符号“1”。如果始终显示000,说明电容器内部短路。如果始终显示溢出,可能是电容器内部极间开路,也可能是选择的电阻档不合适。为了能从显示屏上看到电容器的充电过程,对不同容量的电容器应选择不同的电阻档位。选择电阻档的原则是:电容器较大时,应选用低阻档;电容器容量较小时,应选用高阻档。如果用低阻档检查小容量电容器,由于充电时间很短,会一直显示溢出,看不到变化过程,从而很容易误判为电容器已开路。如果用高阻档检查大容量电容器,由于充电过程很缓慢,测量时间需要较和长。对于0.1~1000uF以上的电容器可按下表选择电阻档(表中的充电时间指显示档从000变化到溢出所需的时间)。 电容器击穿或开路后,不能修理,只能更换同型号的新电容器。为便于修理时选用,下表列出电容器的容量与压缩机电动机输出功率
电容器内部元件击穿:主要是由于制造工艺不良引起的。电容器对外壳绝缘损坏:电容器高压侧引出线由薄铜片制成,如果制造工艺不良,边缘不平有毛刺或严重弯折,其尖容易产生电晕,电晕会使油分解、箱壳膨胀、油面下降而造成击穿。另外,在封盖时,转角处如果烧焊时间过长,将内部绝缘烧伤并产生油污和气体,使电压大大下降而造成电容器损坏。密封不良和漏油:由于装配套管密封不良,潮气进入内部,使绝缘电阻降低;或因漏油使油面下降,导致极对壳放电或元件击穿。 鼓肚和内部游离:由于内部产生电晕、击穿放电和内部游离,电容器在过电压的作用下,使元件起始游离电压降低到工作电场强度以下,由此引起物理、化学、电气效应,使绝缘加速老化、分解,产生气体,形成恶性循环,使箱壳压力增大,造成箱壁外鼓以致爆炸。带电荷合闸引起电容器爆炸:任何额定电压的电容器组均禁止带电荷合闸。电容器组每次重新合闸,必须在开关断开的情况下将电容器放电3 min后才能进行,否则合闸瞬间因电容器上残留电荷而引起爆炸。为了将功率因数控制在较高水平,有些输油泵站安装了无功自动补偿装置,高压输油电机无功经常性波动引起了
有的说国产的不太耐用 真的吗? 之前用过一家 还没到一年就坏了 有没有一些规则啥的?每个项目不太一样 是不是需要根据谐波 电压来选择呢? 谢谢谢谢
小库说: 相信大家选择滤波电容器原因都只有一个,就是想抵抗谐波,谐波如果大的话可以降低电网电压,增加电路损耗,浪费电网容量。那么滤波电容器真的可以抗谐波吗? 其实一般的滤波电容器是不足以抗谐波的,谐波会使电容器介质损耗增加、发热、寿命缩短,吸收谐波后会导致电容器过电流,使熔丝熔断,电容器与电网电感形成串联谐振时,将谐波放大,甚至烧毁电容器。 滤波电容器之所以能够抗谐波,其实是与材质选用,生产工艺,技术条件,容量精确性和稳定性很大的关系。 而库克库伯的滤波电容器之所以对谐波是具有非常强的耐冲击性,其在材质、工艺、技术条件上都是严格按照抗谐波技术所定制的,从而阻止来自电网的干扰,抵抗谐波电流对电网的污染。 库克库伯致力于改善电力系统运行性能,提升电能效率,提高电网质量,库克库伯电力电容器规避庞大笨重结构模式,新产品体
在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡 器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的, 比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)极,与其它电容器不同,它们 在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然 会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的 电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下 插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。
1、铝电解电容器 用浸有糊状电解质的吸水纸夹在两个铝铂之间,薄氧化膜作为介质电容器。由于氧化膜具有单向导电性,电解电容器具有极性。容量大,脉动电流容量偏差大,泄漏电流大;一般不适用于高频低温,不适用于25kHz以上频率低频旁通、信号藕和电源滤波。 2、钽电解电容器 以烧结钽块为正极,电解质采用固态二氧化锰的温度特性,特别是漏电流小、储存性好、使用寿命长、容量偏差小、体积小。 3、薄膜电容器 结构类似于纸电容器,但聚酯、聚乙烯等低损耗塑料作为介质频率特性好,介电损耗小,不能制成大容量、耐热性差滤波器、积分、冲击、定时电路。
请教一问题,希望得到指点: 有批电容出现了问题,估计是系统问题,下面是一些相关参数情况 规格:电容选用单台30KVAR 额定电压等级为0.4KV 投运时间:2005年6月至今 约5个月时间 工程使用地点:电缆厂(生产电缆电动机很多,共三台箱变,变压器容量800KVA/台,每台箱变补偿容量为360KVAR) 其他参数:接触器和熔断器都是选用的80A,0.4KV母线电压大概在390v~410v之间波动 电容ABC三相电流都在43A左右 出现故障:接触器已坏过几只并更换。熔断器已烧坏一只。现3#箱变电容出现两台鼓包现象,1#箱变出现一台鼓包,一台防爆装置动作情况(2#箱变负载最轻 未出现过任何异常现象) 象此类情况,采用什么样的处理方案最佳呢
我公司有一台250KW 6.6KV电动机,有就地补偿电容器,昨天A相高压保险熔断,检查发现A相电容器鼓了,并且有漏油现象,B、C相电容器外观良好,但是为了彻底检查本人想再确认B、C相电容是否有故障,但是由于本人是新手,不知道怎样确认,请大家指教?
q=1.732*u*i到底怎么计算?电容值是一定的,i=u/r,是不是系统电压越高,输出电流越大,那输出容量也究越大了,也就是说,电容器输出无功的大小、电流大小是由电压决定的啊 ?
自愈式无功补偿电容器是不是比普通的电容器要贵很多?作为无功补偿,它的优势是什么?劣势又是什么?哪个品牌的电容器比较好?价格大约是多少?望知情者帮忙解答下
老是看见各个单位的低压电容器鼓肚,漏油,爆炸。。。。。。心里有点为这些单位叫屈。设计单位只是设计的功率补偿够了就可以,而且只采用纯电容补偿,因此问题就出在这里。纯电容几乎100%引起谐波电流的放大,不信大家可以请专业的谐波治理公司进行谐波检测!所以在设计电压补偿的时候考虑串5%到7%的低压电抗器!至于补偿容量很好算,由有功、无功、现在功率因数,及目标功率因数就可以算出,因为补偿的只是无功,因此算需补偿容量时,有功是默认不变的。相信大家这个会算吧!~~电容器,电抗器的参数怎么确定,这个请大家咨询专业的公司!这个不要相信电容器厂家直推不串电抗器的那种!要相信串电抗器的,哪怕是普通的6%串抗。那也是有明显效果的!电容器推荐在450V以上的电容器!如果是400V的电容器他也串电抗器,一种是专业的设计,一种就是忽悠你钱的,99%是忽悠你的钱!价格差异在电抗器上,对于设备运行安全和维护来说,那几万块其实不算什么!
本帖最后由 bodom123 于 2014-8-7 23:18 编辑 如图,我为什么觉得Q不等于 Q‘+Qo 啊,我觉得还应该加上原来未投入而且现在也不打算投入的电容器呀。即例如有3组电容器Q=A B C 电容器A原先已经投入运行,现在正要投入电容器B,电容器C并未打算投入,那Q=A+B+C,不应该等于A+B吧,求高手解释。{:2_95:}
本帖最后由 姑苏才子 于 2017-1-17 17:18 编辑 电容器的主要参数有标称电容量和容差、额定电压、绝缘电阻、损耗率,这些参数主要由电容器中的电介质决定。电容器产品标出的电容量值。云母和陶瓷介质电容器的电容量较低(大约在5000pF以下);纸、塑料和一些陶瓷介质形式的电容器居中(大约在0.005μF ~1.0μF);通常电解电容器的容量较大。
呵呵 请用过“智能电容器”的朋友,谈谈使用体会。比如可靠性、效果、使用方便性,等等。 近来听到客户反映,某设计院设计补偿柜的时候,不用普通电容器了,用了智能电容器,本人不解,用来做就地补偿的智能电容器,咋就用来做柜子了呢,是否新一轮花钱高峰到了?
(1)电力电容器组在接通前应用兆欧表检查放电网络。 (2)接通和断开电容器组时,必须考虑以下几点: ①当汇流排(母线)上的电压超过1.1倍额定电压最大允许值时,禁止将电容器组接入电网。 ②在电容器组自电网断开后1min内不得重新接入,但自动重复接入情况除外。 ③在接通和断开电容器组时,要选用不能产生危险过电压的断路器,并且断路器的额定电流不应低于1.3倍电容器组的额定电流。 (3)电容器每次从电网中断开后,应该自动进行放电。其端电压迅速降低,不论电容器额定电压是多少,在电容器从电网上断开30s后,其端电压应不超过65V。 4)为了保护电容器组,自动放电装置应装在电容器断路器的负荷侧,并经常与电容器直接并联
前几天,为一台高压电容器送电,忘记是多大容量的了,好像是3600KVAR,反正额定电流是165A,在摇测绝缘没有问题后,送电。可是在电源柜前观察,电流A相63A、B相165A、C相64A,总进线无功下降了约2000KVAR多。看着不正常就赶紧停电检查。 电容器每相带3块电容,高压熔断器正常,没有见其他异常,再次送电,正常了!每相都是165A左右,他们怀疑我看错了,现场3个人呢,都看见了! 我怀疑第一次时有几块电容没有工作。可是在主回路里没有任何通断设备,就是串了一个电抗器,每相并联一个消弧线圈,星型解法,公共端引出N相。。。没有理由不工作啊!!各位同仁有没遇见过类似的情况?